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X-Ray Scattering by Aggregates of Bonded Atoms. 
I. Analytical Approximations in Single-Atom Scattering 
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An approach is made to the problem of calculating atomic scattering factors for real atoms in 
which both inherent departures from sphericity and the effects of bonding are taken into account. 
An 'effective' scattering factor for a bonded atom may be defined; the main contribution to this 
factor is the atomic scattering factor usually employed. 

In this paper analytical approximations to atomic wave functions are used in order to obtain 
closed expressions for the scattering factors of atoms hydrogen to neon. For those atoms which 
are non-spherical the scattering is dependent on atomic orientation; but it is easily described in 
terms of two 'principal scattering factors '. There are significant differences between the results of 
these calculations and those given many years ago by James & Brindley. 

1. Introduction 

In the customary treatment of the scattering of X-rays 
by a crystal lattice it is assumed that  each atom 
behaves independently of its neighbours and that  the 
electron distribution in the vicinity of each nucleus is 
spherically symmetrical. With these assumptions, 
atomic scattering factors (f0)* have been calculated 
from Hartree electron distribution curves for a number 
of atoms by James & Brindley (1931) (henceforth JB). 
Further assumptions, of an essentially provisional 
nature, enabled those authors to estimate f in the case 
of atoms whose electron distributions were not known 
with any accuracy. These scattering factors have pro- 
vided a surprisingly satisfactory basis for the crystal- 
structure analysis of the past two decades, but recent 
improvements in technique provide ample evidence of 
possible inadequacies (see, for example, James & 
Johnson, 1939; and Franklin, 1950). A more realistic 
treatment therefore seems desirable and has been made 
the object of these papers. We shall find it helpful to 
list at this point the four main assumptions made by 
JB in their original paper (1931) to which reference 
may be made for details: 

(i) Non-spherical atoms may be dealt with as though 
spherical, using an electron density which is effectively 
'smeared out '  by averaging over all orientations in 
space. 

(ii) The contributions t e l  arising from electrons in an 
atom whose electron-density function is not known 
may be estimated by an interpolation process from the 
calculated contributions of similar electrons in other 
atoms. 

* The suffix will subsequently be omitted, since we shall 
deal only with atoms at rest. 

AC4 

(iii) The contribution of an electron is not dependent 
on the state of ionization of the atom. (This assumption 
plays a vital part in the interpolation process.) 

(iv) There is no significant difference between the 
scattering from an isolated atom and from the same 
atom engaged in chemical (covalent) or 'metallic' 
bonding. 

A more satisfactory approach, starting from suitable 
approximate wave functions for the whole electronic 
system of the molecule or crystal, would not invoke the 
interpolation assumptions (ii) (iii), and would admit an 
estimation of the previously ignored effects of inherent 
non-sphericity (i) and of interatomic interaction (iv). t 
For three reasons the treatment we shall give falls into 
two parts, the effects of bonding being dealt with after 
a preliminary treatment of isolated atoms. In the first 
place, as will be shown in a subsequent paper, it is 
possible to define an effective atomic scattering factor 
(f~) for an atom engaged in bond formation, and the 
main contribution to f~ is simply f, the factor for the 
isolated atom. Secondly, it is desirable to standardize 
the techniques of dealing with approximate analytical 
wave functions and to use them in assessing the effect 
of non-sphericity within the atom before considering 
further refinements. Finally, there are grounds for 
believing that  the effect of bonding is comparatively 
small. 

In this paper, therefore, we consider scattering Dy 
single atoms, using analytical wave functions. The 
calculations are given in detail for atoms up to neon 
but the methods are generally applicable. 

t A referee has drawn my attention to a paper by Ewald & 
HSnl (1936). These authors make elaborate calculations of 
this kind for the diamond lattice, but their methods are not 
easily generalized. 
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2. Assumptions and approximations 

Our first assumption is that  the scattering is completely 
determined by the integral 

f=fp(r) exp {i~S. r} dr, (1) 

where p(r) dr is the probability of finding an electron 
in the volume element dr at r, ~=2~/h,  where h is the 
wave-length of the incident radiation, and S = s - s  0, 

where s, So are unit vectors along the reflected and 
incident beams (in crystal analysis S is therefore 
normal to the plane of reflex!on). 

The electron density p(r) is determined by the wave 
function of the electrons in the atom. In practice the 
best many-electron wave fun ction available (for a single 
electronic configuration) is the determina~..t 

¢~(1) ¢ ~ ( 1 ) . . .  

~ '=  ¢ ~ ( 2 )  ¢ . ( 2 )  . . . .  (2 )  

where ¢~, ¢~, ... are one-electron wave functions or 
orbitals. The density p(r) is expressible, in this approxi- 
mation, as a sum of the one-electron densities associated 
with electrons occupying the separate orbitals, pro- 
vided the latter are orthogonal. Thus 

p( r )=  I e l ( r ) I s+  I Ca(r)Is+ .... 

In  what follows we shall assume a single configuration 
of this kind because, when an atom is bonded to other 
atoms, the set of orbitals involved is completely 
specified. 

The most satisfactory one-electron functions would 
satisfy the Hartree-Fock equations, but, as we wish to 
deal ultimately with molecules and crystals for which 
such functions are not available, we must be content 
with rather cruder functions of similar t y ~ .  Such 
functions have been given by Duncanson & Coulson 
(1944) for the ground states of atoms up to neon. 
Actually, when atoms are bonded the orbitals asso- 
ciated with the valence shell are somewhat modified 
but, at this point, consideration of these higher-order 
effects scarcely seems worth while. In the same way 
we shall form hybrid valence states by superposition 
of the unmodified ground-state orbitals. 

X - R A Y  S C A T T E R I N G  BY A G G R E G A T E S  OF B O N D E D  ATOMS. I 

Contributions to f from single atomic orbitals 
The basic set of atomic orbitals is 

¢(18)--~xs~ -I~ar, Nl,=(~SaS/.)t,  
¢(2s) = 2V~[re-/'~'- Ae-/'b~], hr~ = ~5/3nN)t , |  

! 

where A and N are chosen so as to ensure~ 
ortho-normality,* / 

3. E v a l u a t i o n  o f  t h e  a t o m i c  s c a t t e r i n g  f a c t o r  

Using the variational wave functions of Duncanson & 
Coulson, the atomic scattering factor, which is a sum 
of contributions from the various atomic orbitals, is 
fairly easily evaluated in any given case. Since, how- 
ever, the resultant atomic scattering factor is dependent 
on the orientation of the atom it is necessary to syste- 
matize the treatment in some suitable way. First of all 
the contributions from each type of atomic orbital 
will be calculated; it will then appear how the synthesis 
of atomic factors for various electron configurations 
and orientations may best be brought about. 

(3)  

Is orbitals 

The contribution f(ls) to the scattering factor f is 
simply 

exp {i•'r cos 0} r 2 sin 0 dO de dr, f(l~) 

where, with spherical symmetry, it is convenient to 
take the reflexion normal S as the polar axis and 
K' = K [ S I - 2K sin O, 6 being the angle of scattering.t 
Performing the angle integrations, 

f( ls)  = (N1,) 9 (47r/K') re-~arsinK'rdr. 
0 

All the f ' s  can be expressed in terms of the integrals 

S'~(c,p) = f : r n e "~ sinpr dr, 

which are effectively functions of a single variable 
since, with (p/c)= x, 

s'~(e, p l=s, , (z l /e  '÷~, c',,(c, pl=C,~(~l/c,~+~, 
where 

f: Sn(x)= tne-tsinxtdt, C~(x)= tne-~cosxtdt. (4) 
o 

The variable of interest is ultimately (sin 8/R)= X 
say, and, since K'---4nX, we write 

= , x (5)  
x # a  

2s orbitals 
A similar reduction gives finally 

f (2s) = 41r(N~8) ~ 

- -  + - -  , (6) 
x (2~) 5 xa #4(l+b)a x2 (2#b)a Xx J 

2n 4n 27r X. 
where X l = - ~ X  , xp=#(l +b---~) X , xs=/~ 

* For  or thogonal i ty  of ¢(ls) and ¢(2s), 
A = 3 ( a + b ) a / / x ( 1  + a )  4. 

For  normal i ty  of ¢(2s), 
N = [ 1 - -  1 6 A / z ] ( 1  -t- b) 4 -4- A 2~2/368]. 

a, b, c,/~ are given by Duncanson & Coulson (1944). 
In  wha t  follows there is little oppor tun i ty  for confusing 

0 wi th  the polar angle. 
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2p orbital8 
The 2p and hybrid valence orbitals are no longer 

spherically symmetrical, and consequently the vector 
S cannot be taken as a convenient polar axis. Consider 
the scattering from the 2p~ orbital when the vector S 
makes an angle 0 with the z (polar) axis; let the uni~ 
vector along this axis be k (frame i j k) and take a new 
frame (i ' j '  k') with k '  along S. Then 

f(2p) = ( N 2 ~ ) ~ f e - ~  (r.k)2exp{iJcS,r}dr. 

In the new frame 

k=k '  cos ® +j'sinO, S = [ S I k ' ,  

and therefore 

(Nz~)2fe -9"~r' [Z' COS 0 + y' sin 0] 2 exp {iK' z'} dr '  f(2p) 

=f;,(2p) cos 2 o +fz(2p) sin 2 0,* (7) 

where f'(2p)=(N2~)2 f e-2mr~ cos20 

× exp {iK' r cos 0} # sin 0 dO de dr 

(the scattering factor for an orbital pointing along S) 
and 

±(2~0 ) --~ (N2~) 2 I e-2/~cr r2 sin2 0 sin 2 ¢ f 
. J  

x exp {i~' r cos 8} r ~ sin 0 dO de dr 

(the scattering factor for an orbital perpendicular to S). 
The scattering from a 2p orbital pointing in any 

direction is therefore completely described in terms of 
f"(2p), fL(2p), and the inclination of the orbital to the 
scattering normal S. 

In terms of the functions Sn(x), Cn(x) we find 

47r(N2~)2 [S3(X)-{- 2c2(x) 2Sl(X) 7 
/"(2p)-  (2 c) x _ x -.j, (8) 

fZ(2p)  (2fl~c)Sx--------~[Sl(X)-C2(x)~, (9) 

where in each case, x = (2n//tc) X. 

(sp) (sp 2) (sp a) valence orbital8 
The only hybrid orbitals we shall consider are those 

built up from 28 and the various 2p wave functions. 
As in dealing with the pure 2/o orbitals, it is only 
necessary to consider one member of the set; for 
simplicity we naturally take the function which points 
along a co-ordinate axis, say the z axis. Taking 

we have 

f(¢~) = N2[f(2s) + 2A/(28 2p) + h~f(2p)], 

where the only new term arising is 

f ¢(2s) ~(21o) exp (iKS. r} dr. f(28 2p) 

* The integral arising from the cross-product vanishe~. 

This term, like f(2p), is angle-dependent, and ff S 
makes an angle 0 with the z axis a similar reduction 
shows 

f(2s 2p) =f"(2s 2p) cos 0 + f±(2s 2p) sin O, 

where f±(2s2/o) is identically zero, while 

ff(2s 21o)=f ¢(2s) ¢(2p~) exp {iK'r cos 0} r 2 sin 0 dO de dr. 

A straightforward integration gives, with 

4~r 47r 
and x2= (b+------ i x ,  

Y"(282P) = 4"i 1+ 

_ A (lo) 
t#(b + c) 4 x~. 

(the factor i giving a phase shift of ½n relative to the 
origin). 

A calculation of the scattering from a single hybrid 
orbital therefore involves only the tabulation of one 
additional function (10); often, however, as we shall 
now see, even this can be avoided. 

The atomic scatterin( 3 factor 
I f  the functions f(ls), f(2s), ... are tabulated for each 

atom considered, it is immediately possible to add the 
various contributions and in this way to arrive at an 
f depending on the orientation of each occupied 2p 
orbital with respect to the reflexion normal (S). The 
calculation is, however, simplified by a suitable de- 
composition of the electron-density function. 

Let us consider first a group of three singly-occupied 
2p orbitals, providing a rectangular co-ordinate frame 
in which the vector S has:direction cosines (/, m, n). 
The scattering factor for this system is, by (7), 

Zf(2:p) = (l 2 + m 2 + n2)f"(2p) + [(1 --/2) + (1 -- m 2) 

+(1-n2)]f±(2p), 

i.e. Z/(2p) =f"(2p) + 2f±(2p), (11) 

which is angle-independent, arising, in fact, from a 
spherically symmetrical total electron density. Now 
all the atoms we consider have a unique symmetry 
axis, namely, that  2p orbital which is distinguished 
from the rest by the number of electrons it contains; 
thus in boron only one 2p orbital contains an electron 
while in oxygen only one 2to orbital contains two 
electrons. The atomic scattering factor is then ex- 
pressible in terms of the angle between this axis and S, 
together with two 'principal '  factors (f', f±) referring 
to scattering in the particular cases 0 = 0, ½n. 

The electron density for fluorine, for example, may 
be decomposed into two complete shells of three 2p 
electrons minus one 2/o orbital; the total scattering 
factor is then 

f=  2f(is) + 2f(2s)+ 2(f"(2p)+ 2f±(2p)) 
- -  l(f'(2p) cos 9" 0 +f±(2p)sin 2 0), 

33-2 
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and this may be written 

f=fu cos 2 ® +f.L sin 2 0,  

where f"=2f(ls)+2f(2s)+f"(2p)+4fJ-(2p) 
and fJ-=2f(ls)+2f(2s)+2f"(2p)+3fJ-(2p) 
refer to scattering with S (respectively) along and per- 
pendicular to the symmetry axis. I t  is these two 
principal scattering factors which we shall tabulate. 

Hybrid valence states 
In certain valence states involving hybrid orbitals f 

is very easily obtained using the result stated in § 2; 
the n-electron wave function (2) of a configuration 
based upon n mutually orthogonal orbitals ¢1, ¢3,. . . ,  ¢~ 
gives an electron density which is the sum of the one- 
electron densities [ ¢1 [2, [¢2 ]2, ..., [ Cn [2. Now we may 
add corresponding elements in any two columns of (2) 
without altering the value of the determinant. Re- 
placement of ¢1, ¢2, ..., ¢~ by any linear combination 

! ! ! 

of these orbitals, ¢1, ¢9, ..., Cn therefore gives the same 
wave function and, ff the new functions are also 
mutually orthogonal, 

p ( r ) = Z  ] ¢(r)]2=Z[ ¢'(r)13 

The two sets of one-electron densities, I¢11 S, ..., I Cn I 
and [¢i [9, ..., ] ¢~ 19 thus yield exactly the same total 
electron density. This has a general application to 
certain hybrid states; an example will make this dear. 
In (sp) (sp z) (sp 3) hybridization each possibb set of 
valence orbitals is simply a new set of orthogonal 
combinations of the four available orbitals (2s) (2p~) 
(2p~) (2p~); from above it follows that, provided the 
whole group of vMence orbitals is involved in the 
electron configuration, the total electron density is 
independent of the state of hybridization. This is the 
case in the carbon atom where four electrons are avail- 
abb and in each of the digonal, trigonal and tetrahedral 
valence states there are four valence orbitals (2, 3 and 4 
respectively being hybrids). The total electron density 

is thus in each case the sum of the one-electron densities 
associated with the four basic orbitals involved, i.e. 

p= I ¢(28)I ~. +l ¢(2px)12 + [¢(2p~)l ~+1 ¢(2p~)i S 
I t  follows immediately that  the contribution of the 
valence electron to the atomic scattering factor is 

f(2s) +f(2px) +f(2p,) +f(2p~), 
and that the scattering should be independent of 
whether the carbon atom is in acetylene, graphite or 
diamond (the three typical valence states). Moreover, 
from (11), the electron distribution in the immediate 
vicinity of such an atom is spherically symmetrical, 
a result which is not intuitively obvious. 

The great importance of states of this kind in carbon 
chemistry warrants a calculation of the associated 
scattering factor, but we omit variations, occurring 
both in carbon and other atoms, in which the valence 
orbitals are unequally filled. If, for example, one orbital 
is doubly filled, as with the lone-pair electrons in carbon 
monoxide (i.e. one orbital occurs twice in the deter- 
minantal wave function, combined with different spins) 
the above result would not apply directly and we 
should need to add the contribution of an extra hybrid 
orbital to the complete shell of singly-filled valence 
orbitals. Cases of this kind must be dealt with in- 
dividually, using the results already given. I t  is worth 
while noting that in such cases there is always a phase 
shift in the scattered beam relative to that  from the 
centre of the atom. 

4. General discussion 

Table 1 gives the principal atomic scattering factors fll 
andf£ (or the single factorf  for spherical atoms) for the 
ground states* of the neutral atoms hydrogen to noon. 
For an X-ray reflexion from lattice planes whose 
normal makes an angle ® with the symmetry axis of an 

* In  some cases it would  be  more  correct  to speak of  the  
' p r epa red  s t a t e '  since, in ant ic ipat ion  of  chemical bonding,  
a single electronic configurat ion has been specified (eL § 2). 

X 0 

H f 1.0 
He f 2.0 
Li f 3.0 
Be f 4.0 

tf 5.0 

C r ~  6.0 
I 6.0 

C (valence f 6-0 
states)  

N f 7.0 

o { f f  8.0 
8"0 

t¢°° 9"0 

No f 10.0 

Table 1. 

0"025 0"05 0.075 

0"952 0.829 0"664 

1"964 1.869 1.722 

2.709 2-263 1"950 

3"742 3.150 2.553 

4.710 3"982 3"130 
4-802 4.297 3-647 

5.846 5.417 4.874 
5.786 5.213 4.492 

5.803 5.271 4.581 

6.822 6.374 5"703 

7-850 7-396 6.643 
7.868 7.526 6"865 

8-901 8-540 8.024 
8"889 8"457 7"834 

9"928 9"540 8.991 

Atomic scattering factors: hydrogen to neon 
0.1 0.125 0"15 0"175 0.2 0-25 

0.514 0"383 0.281 0"205 0"150 0"087 

1.544 1"353 1.164 0.987 0"829 0"576 

1.786 1.675 1-572 1.462 1"348 1.119 

2.129 1"878 1.736 1.644 1"569 1-424 

2.423 1.941 1.675 1"539 1.480 1.435 
3.042 2.559 2.214 1.981 1.824 1-626 

4"172 3-565 3"051 2"646 2"340 1"945 
3"639 2.941 2.421 2.052 1.813 1-576 

3-803 3.137 2"629 2.255 1.999 1-711 

4"890 4-164 3"489 2.892 2.507 2.043 

5.791 4-915 4.092 3.375 2.790 2"002 
6.144 5.383 4"649 3'987 3.422 2.595 

7-359 6.630 5.885 5-164 4"590 3.454 
7.072 6.235 5.396 4.610 3"979 2.826 

8"301 7"520 6"699 5"888 5"128 3"839 

0.3 0"4 0.5 0.6 0"7 0.8 

0.048 0"019 0-009 0.004 0"002 0-001 

0.397 0.194 0.101 0.056 0"033 0.021 

0.908 0-576 0"362 0-230 0-150 0"100 

1.266 0.955 0.695 0.494 0.352 0"253 

1.383 1.195 0.966 0"759 0-586 0"449 
1.486 1.227 0.977 0.764 0.588 0-450 

1.717 1.435 1.208 0.975 0.814 0.658 
1.398 1.342 1.170 0.959 0.807 0-653 

1.566 1-368 1.169 0.973 0.795 0.654 

1-697 1-464 1.316 1.156 0"994 0.841 

1.614 1.365 1-300 1.221 1.110 0-988 
2.102 1.647 1.448 1.297 1-150 1.010 

2.718 1-941 1.615 1.431 1.283 1.146 
2.145 1.555 1.388 1-304 1-212 1.105 

2"951 1"906 1"549 1.386 1.303 1.207 
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atom (defined by that  2p orbital which contains a 
different number of electrons from the other 2p 
orbitals), it is necessary to use an atomic scattering 
factor f=f"cos~O+f±sing®. The actual curves are 
drawn in Figs. 1-10. For comparison with the JB 
curves (broken line) f" and f± are plotted against 
X '= ( s in0 /h )  with h in/~ngstrSm units. In Table 1, 
however, f" and f± are given in terms of X = (sin 0/h) in 
atomic units. X'  is readily expressed in terms of X, 
using X = 0.5282 X'. 

Perhaps the most striking feature of the curves is 
the marked effect of non-sphericity on the low- and 
medium-angle scattering. An accurate estimation of 
the structure factor for a group of such atoms cannot, 
therefore, be made unless the orientation of the group 
in the crystal is at  least roughly known; consequently, 
the effect of non-sphericity cannot be introduced ab 
initio in X-ray analysis but  only in the more precise 
analysis of structures already roughly determined. In 
the preliminary analysis the most suitable approximate 
scattering factor for a non-spherical atom is probably 

f =  ½(f" + 2f±), (12) 

in which the 2p electrons are assumed to make a 
'mean contribution'  defined by (13) of the following 
paragraph. This factor is not plotted in the figures but 
lies between the principal factors and in some cases is 
not very different from the JB curves. 

We might now ask how the effect of asphericity of the 
2p orbitals ever came to be regarded as small; the 
answer is provided by an examination of the assumption 
(iii) (p. 513). If  f(2p)=f"(2p)cos~'O+f-1-(2p)sin~® is 
weighted with an element of solid angle do = 27r sin 0 dO 
and averaged over all orientations 0,  the resultant 
' mean '  scattering factor is 

f(2p) = ½(f" (2p) + 2f±(2p)), (13) 

and therefore one-sixth of the scattering factor for a 
closed shell of six 2p electrons. This term corresponds 
directly, therefore, to t he '  contribution per 2p electron' 
as assessed by James & Brindley. The distinction 
between the mean contributions, f(2p), and the 
extreme contributions f"(2p) and f±(2p), is clearly 
brought out in Fig. 11, where the three curves are 
plotted for a 2p electron in carbon. While the mean 
factor f(2p) rapidly becomes insignificant with in- 
creasing angle of scattering it is clearly a mistake to 
conclude that  the 2p electrons are ineffective in high- 
angle scattering; they do, in fact, make a considerable 
contribution over an important range of angles, the 
f"(2p) curve showing very strikingly the effect of inter- 
ference between the beams scattered from opposite 
ends of the ' dumb-bell '  orbital. 

As already stated, the only hybrid valence states 
considered are the pure digonal, trigonal and tetra- 
hedral states of the carbon atom; there are many 
instances in which valence states approximating 
closely to these types exist. The associated scattering 

curve is shown in Fig. 12, along with the JB curve. 
Comparison indicates both a considerable enhance- 
mont of the low-angle scattering and a significant 
divergence in the high-angle region, a result which is 
of particular interest since experimental evidence has 
already resulted in the adoption of empirical curves of 
precisely the form given (Brill, 1950; Franklin, 1950). 
Indeed, the curve given by Brill (indicated in Fig. 12 
by crosses) is almost coincident with our theoretical 
curve over a wide range. There is, however, still a 
certain discrepancy in the region of extremely low- 
anglo scattering; ff the empirical point is accepted, it is 
difficult to reconcile with the theory so far developed, 
for the low-angle peak cannot be so drastically modified 
by any reasonable modification of the wave function. 
But it is in precisely this range tha t  we are prepared 
to find an effective contribution from those regions of 
the electron density more remote from the nucleus. 
This, of course, involves the whole question of bonding 
and lies outside the scope of the present paper. 

Finally, some discussion of the accuracy of the curves 
is desirable. I t  is difficult to estimate the absolute 
accuracy; but the tables are given to four figures. This 
would seem necessary for purposes of comparison, since 
changes of wave function often have a surprisingly 
small effect on the curves. The only feasible method of 
making a precise estimate of the accuracy would be to 
make a comparison with curves computed using wave 
functions obtained by numerical solution of the Fock 
equations. This has not yet  been attempted, but the 
basic scheme of calculation need not differ appreciably 
from tha t  sot out in this paper; the Fock functions 
could be fitted by analytical functions of substantially 
the same form as those employed here, and the final 
results would again be expressible in terms of the 
functions Sn(x), C,~(x). However, at least some re- 
assurance can be obtained from the JB curves them- 
selves. Of all the atoms considered in this paper only 
two, helium and lithium, possess JB curves computed 
directly from Hartree electron densities (i.e. indepen- 
dently of interpolation techniques and other approxi- 
mations). Our curves are, perhaps, least reliable for 
these atoms owing to the predominance of Is electrons, 
for which our wave function is of the simple screening- 
constant type (with one parameter only); any errors due 
simply to inadequacies of the wave function should 
then be revealed by comparison with the JB curves 
which in these two cases could, in principle, be superior. 
There is scarcely any divergence between the different 
approximations (Figs. 2 and 3); indeed, it is not easy to 
detect any real difference, for the points computed by 
James & Brindloy are given only to two- or three-figure 
accuracy (as indicated in Figs. 2-4). I t  therefore seems 
highly improbable tha t  the very marked divergence 
found in other cases can be at tr ibuted to anything but 
a real failure of the hitherto accepted curves. Although 
our calculations have been confined to atoms for which 
rather good analytical wave functions exist, there is no 
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reason why similar calculations should not be extended 
to higher atoms, using Slater-type wave functions. I t  
seems likely that  even in these cases the computed 
functions would be superior to those estimated by 
interpolation, especially in cases where there is a 
marked departure from spherical symmetry.  

APPENDIX 
The functions 

fo Sn(x)  = t n e - t  sin xt  dt, Cn(x) = t '~ e - t  cos xt  dr, 
o 

which appear repeatedly in this and subsequent work, 
may be tabulated very easily by making use of the 
following recurrence relations, derived by integration 
by parts: 

n + l  sn+l(x) = ~  [s~(x)+ xC~(x)], 

n + l  
C~+l(x) = 1 ~  [CAx)- xSAx)]. 

All the functions may  be built up from 

S0(x)=z/(l+x~), Co(~)=l/(l +x~), 
by repeated application of these formulae. This appears 
to afford the simplest method of systematic tabulation. 
Moreover, simple and accurate interpolation formulae 
are easily derived and facilitate the use of such tables. 

Individual values of Sn(x) ,  Cn(x) may be calculated 

directly by reduction to a trigonometric form. Thus, 
with x -  tan a, 

S,~(x) = F(n + 1) cos n+l a sin n + la ,  

Cn(x) = F(n + 1) cosn+la cos n + la.  

These formulae are valid when n is non-integral and 
would therefore be necessary in using Slater-type wave 
functions for atoms above neon. 

The first few functions of each series (and ~his is all 
tha t  is required in the present paper) may, however, 
be evaluated algebraically by direct rocursion from 
S0(x ) and Co(X ) , the expressions reducing to quite 
simple form.* 

I am greatly indebted to my wife for dealing with the 
computations involved in this work. My thanks are 
also due to Prof. C. A. Coulson, F.R.S., for reading 
the manuscript. 
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